Compensation for Nonlinear Distortion in Noise for Robust Speech Recognition
نویسندگان
چکیده
The performance, reliability, and ubiquity of automatic speech recognition systems has flourished in recent years due to steadily increasing computational power and technological innovations such as hidden Markov models, weighted finite-state transducers, and deep learning methods. One problem which plagues speech recognition systems, especially those that operate offline and have been trained on specific in-domain data, is the deleterious effect of noise on the accuracy of speech recognition. Historically, robust speech recognition research has focused on traditional noise types such as additive noise, linear filtering, and reverberation. This thesis describes the effects of nonlinear dynamic range compression on automatic speech recognition and develops a number of novel techniques for characterizing and counteracting it. Dynamic range compression is any function which reduces the dynamic range of an input signal. Dynamic range compression is a widely-used tool in audio engineering and is almost always a component of a practical telecommunications system. Despite its ubiquity, this thesis is the first work to comprehensively study and address the effect of dynamic range compression on speech recognition. More specifically, this thesis treats the problem of dynamic range compression in three ways: (1) blind amplitude normalization methods, which counteract dynamic range compression when its parameter values allow the function to be mathematically inverted, (2) blind amplitude reconstruction techniques, i.e., declipping, which attempt to reconstruct clipped segments of the speech signal that are lost through non-invertible dynamic range compression, and (3) matched-training techniques, which attempt to select the pre-trained acoustic model with the closest set of compression parameters. All three of these methods rely on robust estimation of the dynamic range compression distortion parameters. Novel algorithms for the blind prediction of these parameters are also introduced. The algorithms’ quality is evaluated in terms of the degree to which they decrease speech recognition word error rate, as well as in terms of the degree to which they increase a given speech signal’s signal-to-noise ratio. In all evaluations, the possibility of independent additive noise following the application of dynamic range compression is assumed.
منابع مشابه
Generalized-Log Spectral Mean Normalization for Speech Recognition
Most compensation methods for robust speech recognition against noise assume independency between speech, additive and convolutive noise. However, the nonlinear nature distortion caused by noise may introduce correlation between noise and speech. To tackle this issue, we propose generalized-log spectral mean normalization (GLSMN) in which log spectral mean normalization (LSMN) is carried out in...
متن کاملروشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه
Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...
متن کاملFactorial Models for Noise Robust Speech Recognition
Noise compensation techniques for robust automatic speech recognition (ASR) attempt to improve system performance in the presence of acoustic interference. In feature-based noise compensation, which includes speech enhancement approaches, the acoustic features that are sent to the recognizer are first processed to remove the effects of noise (see Chapter 9). Model compensation approaches, in co...
متن کاملA unified framework of HMM adaptation with joint compensation of additive and convolutive distortions
In this paper, we present our recent development of a model-domain environment-robust adaptation algorithm, which demonstrates high performance in the standard Aurora 2 speech recognition task. The algorithm consists of two main steps. First, the noise and channel parameters are estimated using multi-sources of information including a nonlinear environment distortion model in the cepstral domai...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملTowards High-Accuracy Low-Cost Noisy Robust Speech Recognition Exploiting Structured Model
It is well known that the distorted speech can be considered generated from the clean speech with the additive noise and the convolutive channel as In this paper, we present our recent study on using this structured model of physical distortion for robust automatic speech recognition. Three methods are introduced for joint compensation of additive and convolutive distortions (JAC), with diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014